publications

List of publications, for more information see Google Scholar.

2025

  1. Preprint
    Fast and accurate parameter estimation of high-redshift sources with the Einstein Telescope
    Filippo Santoliquido, Jacopo Tissino, Ulyana Dupletsa, and 8 more authors
    Apr 2025
  2. Preprint
    Reparameterized LLM Training via Orthogonal Equivalence Transformation
    Zeju Qiu, Simon Buchholz, Tim Z Xiao, and 3 more authors
    Jun 2025
  3. Nature
    bns-v1.png
    Real-time inference for binary neutron star mergers using machine learning
    Maximilian Dax, Stephen R. Green, Jonathan Gair, and 7 more authors
    Nature, Mar 2025
  4. Workshop Paper
    Synthesizing 3D Abstractions by Inverting Procedural Buildings with Transformers
    Maximilian Dax, Jordi Serrano Berbel, Jan Stria, and 2 more authors
    In CVPR workshop on Synthetic Data for Computer Vision Workshop, Jun 2025
  5. A&A
    Flow matching for atmospheric retrieval of exoplanets: Where reliability meets adaptive noise levels
    Timothy D Gebhard, Jonas Wildberger, Maximilian Dax, and 4 more authors
    Astronomy & Astrophysics, Jun 2025
  6. Science Advances
    Fast and reliable probabilistic reflectometry inversion with prior-amortized neural posterior estimation
    Vladimir Starostin, Maximilian Dax, Alexander Gerlach, and 3 more authors
    Science Advances, Jun 2025

2024

  1. Preprint
    Evidence for eccentricity in the population of binary black holes observed by LIGO-Virgo-KAGRA
    Nihar Gupte, Antoni Ramos-Buades, Alessandra Buonanno, and 9 more authors
    Apr 2024
  2. Workshop Paper
    Inferring Atmospheric Properties of Exoplanets with Flow Matching and Neural Importance Sampling
    Timothy D Gebhard, Jonas Wildberger, Maximilian Dax, and 3 more authors
    In AAAI Workshop on AI to Accelerate Science and Engineering (spotlight), Apr 2024

2023

  1. PRL
    dingo-is-hr.gif
    Neural Importance Sampling for Rapid and Reliable Gravitational-Wave Inference
    Maximilian Dax, Stephen R. Green, Jonathan Gair, and 5 more authors
    Phys. Rev. Lett., Apr 2023
  2. NeurIPS
    Flow Matching for Scalable Simulation-Based Inference
    Jonas Wildberger*, Maximilian Dax*, Simon Buchholz*, and 3 more authors
    NeurIPS 2023, Dec 2023
  3. PRD
    Adapting to noise distribution shifts in flow-based gravitational-wave inference
    Jonas Wildberger, Maximilian Dax, Stephen R. Green, and 5 more authors
    Phys. Rev. D, Dec 2023
  4. Workshop Paper
    Flow Matching for Scalable Simulation-Based Inference
    Jonas Wildberger*, Maximilian Dax*, Simon Buchholz*, and 3 more authors
    In ICML 2023 Workshop on Machine Learning for Astrophysics (spotlight), Jul 2023
  5. Workshop Paper
    Flow Matching for Scalable Simulation-Based Inference
    Jonas Bernhard Wildberger*, Maximilian Dax*, Simon Buchholz*, and 3 more authors
    In ICML 2023 Workshop on Structured Probabilistic Inference & Generative Modeling, Jul 2023

2022

  1. ICLR
    Group equivariant neural posterior estimation
    Maximilian Dax, Stephen R. Green, Jonathan Gair, and 3 more authors
    ICLR 2022, Jul 2022
  2. Workshop Paper
    Addressing out-of-distribution data for flow-based gravitational wave inference
    Maximilian Dax*, Stephen R Green*, Jonas Wildberger*, and 5 more authors
    In Machine Learning and the Physical Sciences Workshop at NeurIPS 2022, Dec 2022

2021

  1. PRL
    dingo-gwtc1-hr.png
    Real-Time Gravitational Wave Science with Neural Posterior Estimation
    Maximilian Dax, Stephen R. Green, Jonathan Gair, and 3 more authors
    Phys. Rev. Lett., Dec 2021
  2. EPJC
    Dispersive analysis of the Primakoff reaction γK →K \pi
    Maximilian Dax, Dominik Stamen, and Bastian Kubis
    Eur. Phys. J. C, Dec 2021
  3. AAAI
    Explicitly modeled attention maps for image classification
    Andong Tan, Duc Tam Nguyen, Maximilian Dax, and 2 more authors
    AAAI 2021, Dec 2021
  4. Workshop Paper
    Amortized Bayesian inference of gravitational waves with normalizing flows
    Maximilian Dax, Stephen R Green, Jonathan Gair, and 3 more authors
    In Machine Learning and the Physical Sciences Workshop at NeurIPS 2021 (contributed talk), Dec 2021

2019

  1. NeurIPS
    DeepUSPS: Deep Robust Unsupervised Saliency Prediction With Self-Supervision
    Tam Nguyen*, Maximilian Dax*, Chaithanya Kumar Mummadi, and 4 more authors
    NeurIPS 2019, Dec 2019

2018

  1. EPJC
    Quark-mass dependence in ω→3\pi decays
    Maximilian Dax, Tobias Isken, and Bastian Kubis
    Eur. Phys. J. C, Dec 2018