@article{Santoliquido:2025lot,author={Santoliquido, Filippo and Tissino, Jacopo and Dupletsa, Ulyana and Branchesi, Marica and Harms, Jan and Sedda, Manuel Arca and Dax, Maximilian and Kofler, Annalena and Green, Stephen R and Gupte, Nihar and others},title={{Fast and accurate parameter estimation of high-redshift sources with the Einstein Telescope}},eprint={2504.21087},archiveprefix={arXiv},primaryclass={astro-ph.HE},month=apr,year={2025},}
Preprint
Reparameterized LLM Training via Orthogonal Equivalence Transformation
Zeju Qiu, Simon Buchholz, Tim Z Xiao, and 3 more authors
@article{qiu2025reparameterized,title={Reparameterized LLM Training via Orthogonal Equivalence Transformation},author={Qiu, Zeju and Buchholz, Simon and Xiao, Tim Z and Dax, Maximilian and Sch{\"o}lkopf, Bernhard and Liu, Weiyang},eprint={2506.08001},archiveprefix={arXiv},year={2025},month=jun,}
Nature
Real-time inference for binary neutron star mergers using machine learning
Maximilian Dax, Stephen R. Green, Jonathan Gair, and 7 more authors
@article{Dax:2024mcn,author={Dax, Maximilian and Green, Stephen R. and Gair, Jonathan and Gupte, Nihar and P{\"u}rrer, Michael and Raymond, Vivien and Wildberger, Jonas and Macke, Jakob H. and Buonanno, Alessandra and Sch{\"o}lkopf, Bernhard},title={{Real-time inference for binary neutron star mergers using machine learning}},eprint={2407.09602},archiveprefix={arXiv},primaryclass={gr-qc},reportnumber={LIGO-P2400294},doi={10.1038/s41586-025-08593-z},journal={Nature},volume={639},number={8053},pages={49--53},year={2025},month=mar,url={https://www.nature.com/articles/s41586-025-08593-z},dimensions={true},}
Workshop Paper
Synthesizing 3D Abstractions by Inverting Procedural Buildings with Transformers
Maximilian Dax, Jordi Serrano Berbel, Jan Stria, and 2 more authors
In CVPR workshop on Synthetic Data for Computer Vision Workshop, Jun 2025
@inproceedings{dax2025synthesizing,title={Synthesizing 3D Abstractions by Inverting Procedural Buildings with Transformers},author={Dax, Maximilian and Berbel, Jordi Serrano and Stria, Jan and Guibas, Leonidas and Bergmann, Urs M},booktitle={CVPR workshop on Synthetic Data for Computer Vision Workshop},eprint={2501.17044},archiveprefix={arXiv},year={2025},month=jun,}
A&A
Flow matching for atmospheric retrieval of exoplanets: Where reliability meets adaptive noise levels
Timothy D Gebhard, Jonas Wildberger, Maximilian Dax, and 4 more authors
@article{gebhard2024flow,title={Flow matching for atmospheric retrieval of exoplanets: Where reliability meets adaptive noise levels},author={Gebhard, Timothy D and Wildberger, Jonas and Dax, Maximilian and Kofler, Annalena and Angerhausen, Daniel and Quanz, Sascha P and Sch{\"o}lkopf, Bernhard},journal={Astronomy \& Astrophysics},volume={693},pages={A42},year={2025},publisher={EDP Sciences},}
Science Advances
Fast and reliable probabilistic reflectometry inversion with prior-amortized neural posterior estimation
Vladimir Starostin, Maximilian Dax, Alexander Gerlach, and 3 more authors
@article{starostin2025fast,title={Fast and reliable probabilistic reflectometry inversion with prior-amortized neural posterior estimation},author={Starostin, Vladimir and Dax, Maximilian and Gerlach, Alexander and Hinderhofer, Alexander and Tejero-Cantero, {\'A}lvaro and Schreiber, Frank},journal={Science Advances},volume={11},number={11},pages={eadr9668},year={2025},publisher={American Association for the Advancement of Science},}
2024
Preprint
Evidence for eccentricity in the population of binary black holes observed by LIGO-Virgo-KAGRA
Nihar Gupte, Antoni Ramos-Buades, Alessandra Buonanno, and 9 more authors
@misc{Gupte:2024jfe,author={Gupte, Nihar and Ramos-Buades, Antoni and Buonanno, Alessandra and Gair, Jonathan and Miller, M Coleman and Dax, Maximilian and Green, Stephen R and P{\"u}rrer, Michael and Wildberger, Jonas and Macke, Jakob and Romero-Shaw, Isobel M. and Sch{\"o}lkopf, Bernhard},title={{Evidence for eccentricity in the population of binary black holes observed by LIGO-Virgo-KAGRA}},eprint={2404.14286},archiveprefix={arXiv},primaryclass={gr-qc},month=apr,year={2024},}
Workshop Paper
Inferring Atmospheric Properties of Exoplanets with Flow Matching and Neural Importance Sampling
Timothy D Gebhard, Jonas Wildberger, Maximilian Dax, and 3 more authors
In AAAI Workshop on AI to Accelerate Science and Engineering (spotlight), Apr 2024
@inproceedings{gebhard2023inferring,title={Inferring Atmospheric Properties of Exoplanets with Flow Matching and Neural Importance Sampling},author={Gebhard, Timothy D and Wildberger, Jonas and Dax, Maximilian and Angerhausen, Daniel and Quanz, Sascha P and Sch{\"o}lkopf, Bernhard},booktitle={AAAI Workshop on AI to Accelerate Science and Engineering (spotlight)},year={2024},keywords={W},}
2023
PRL
Neural Importance Sampling for Rapid and Reliable Gravitational-Wave Inference
Maximilian Dax, Stephen R. Green, Jonathan Gair, and 5 more authors
@article{Dax:2022pxd,author={Dax, Maximilian and Green, Stephen R. and Gair, Jonathan and P{\"u}rrer, Michael and Wildberger, Jonas and Macke, Jakob H. and Buonanno, Alessandra and Sch{\"o}lkopf, Bernhard},title={{Neural Importance Sampling for Rapid and Reliable Gravitational-Wave Inference}},eprint={2210.05686},archiveprefix={arXiv},primaryclass={gr-qc},reportnumber={LIGO-P2200297},doi={10.1103/PhysRevLett.130.171403},journal={Phys. Rev. Lett.},volume={130},number={17},pages={171403},year={2023},month=apr,url={https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.130.171403},dimensions={true},}
NeurIPS
Flow Matching for Scalable Simulation-Based Inference
Jonas Wildberger*, Maximilian Dax*, Simon Buchholz*, and 3 more authors
@article{dax2023flow,title={Flow Matching for Scalable Simulation-Based Inference},author={Wildberger, Jonas and Dax, Maximilian and Buchholz, Simon and Green, Stephen R and Macke, Jakob H and Sch{\"o}lkopf, Bernhard},journal={NeurIPS 2023},eprint={2305.17161},archiveprefix={arXiv},year={2023},month=dec,}
PRD
Adapting to noise distribution shifts in flow-based gravitational-wave inference
Jonas Wildberger, Maximilian Dax, Stephen R. Green, and 5 more authors
@article{Wildberger:2022agw,author={Wildberger, Jonas and Dax, Maximilian and Green, Stephen R. and Gair, Jonathan and P\"urrer, Michael and Macke, Jakob H. and Buonanno, Alessandra and Sch\"olkopf, Bernhard},title={{Adapting to noise distribution shifts in flow-based gravitational-wave inference}},eprint={2211.08801},archiveprefix={arXiv},primaryclass={gr-qc},doi={10.1103/PhysRevD.107.084046},journal={Phys. Rev. D},volume={107},number={8},pages={084046},year={2023},}
Workshop Paper
Flow Matching for Scalable Simulation-Based Inference
Jonas Wildberger*, Maximilian Dax*, Simon Buchholz*, and 3 more authors
In ICML 2023 Workshop on Machine Learning for Astrophysics (spotlight), Jul 2023
@inproceedings{wildberger2023flow,title={Flow Matching for Scalable Simulation-Based Inference},author={Wildberger, Jonas and Dax, Maximilian and Buchholz, Simon and Green, Stephen R and Macke, Jakob H and Sch{\"o}lkopf, Bernhard},booktitle={ICML 2023 Workshop on Machine Learning for Astrophysics (spotlight)},year={2023},month=jul,keywords={W},}
Workshop Paper
Flow Matching for Scalable Simulation-Based Inference
Jonas Bernhard Wildberger*, Maximilian Dax*, Simon Buchholz*, and 3 more authors
In ICML 2023 Workshop on Structured Probabilistic Inference & Generative Modeling, Jul 2023
@inproceedings{wildberger2023flow2,title={Flow Matching for Scalable Simulation-Based Inference},author={Wildberger, Jonas Bernhard and Dax, Maximilian and Buchholz, Simon and Green, Stephen R and Macke, Jakob H. and Sch{\"o}lkopf, Bernhard},booktitle={ICML 2023 Workshop on Structured Probabilistic Inference {\&} Generative Modeling},year={2023},month=jul,keywords={W},url={https://openreview.net/forum?id=LdGjxxjfh8},}
2022
ICLR
Group equivariant neural posterior estimation
Maximilian Dax, Stephen R. Green, Jonathan Gair, and 3 more authors
@article{Dax:2021myb,author={Dax, Maximilian and Green, Stephen R. and Gair, Jonathan and Deistler, Michael and Sch\"olkopf, Bernhard and Macke, Jakob H.},title={{Group equivariant neural posterior estimation}},journal={ICLR 2022},year={2022},eprint={2111.13139},archiveprefix={arXiv},primaryclass={cs.LG},}
Workshop Paper
Addressing out-of-distribution data for flow-based gravitational wave inference
Maximilian Dax*, Stephen R Green*, Jonas Wildberger*, and 5 more authors
In Machine Learning and the Physical Sciences Workshop at NeurIPS 2022, Dec 2022
@inproceedings{daxaddressing,title={Addressing out-of-distribution data for flow-based gravitational wave inference},author={Dax, Maximilian and Green, Stephen R and Wildberger, Jonas and Gair, Jonathan and P{\"u}rrer, Michael and Macke, Jakob H and Buonanno, Alessandra and Sch{\"o}lkopf, Bernhard},booktitle={Machine Learning and the Physical Sciences Workshop at NeurIPS 2022},year={2022},month=dec,keywords={W},}
2021
PRL
Real-Time Gravitational Wave Science with Neural Posterior Estimation
Maximilian Dax, Stephen R. Green, Jonathan Gair, and 3 more authors
@article{Dax:2021tsq,author={Dax, Maximilian and Green, Stephen R. and Gair, Jonathan and Macke, Jakob H. and Buonanno, Alessandra and Sch\"olkopf, Bernhard},title={{Real-Time Gravitational Wave Science with Neural Posterior Estimation}},eprint={2106.12594},archiveprefix={arXiv},primaryclass={gr-qc},reportnumber={LIGO-P2100223},doi={10.1103/PhysRevLett.127.241103},journal={Phys. Rev. Lett.},volume={127},number={24},pages={241103},year={2021},url={https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.127.241103},dimensions={true},}
EPJC
Dispersive analysis of the Primakoff reaction γK →K \pi
@article{Dax:2020dzg,author={Dax, Maximilian and Stamen, Dominik and Kubis, Bastian},title={{Dispersive analysis of the Primakoff reaction $\gamma K \rightarrow K \pi $}},eprint={2012.04655},archiveprefix={arXiv},primaryclass={hep-ph},doi={10.1140/epjc/s10052-021-08951-x},journal={Eur. Phys. J. C},volume={81},number={3},pages={221},year={2021},}
AAAI
Explicitly modeled attention maps for image classification
Andong Tan, Duc Tam Nguyen, Maximilian Dax, and 2 more authors
@article{tan2021explicitly,title={Explicitly modeled attention maps for image classification},author={Tan, Andong and Nguyen, Duc Tam and Dax, Maximilian and Nie{\ss}ner, Matthias and Brox, Thomas},journal={AAAI 2021},volume={35},number={11},pages={9799--9807},year={2021},eprint={2006.07872},archiveprefix={arXiv},primaryclass={cs.CV},}
Workshop Paper
Amortized Bayesian inference of gravitational waves with normalizing flows
Maximilian Dax, Stephen R Green, Jonathan Gair, and 3 more authors
In Machine Learning and the Physical Sciences Workshop at NeurIPS 2021 (contributed talk), Dec 2021
@inproceedings{daxamortized,title={Amortized Bayesian inference of gravitational waves with normalizing flows},author={Dax, Maximilian and Green, Stephen R and Gair, Jonathan and Macke, Jakob H and Buonanno, Alessandra and Sch{\"o}lkopf, Bernhard},booktitle={Machine Learning and the Physical Sciences Workshop at NeurIPS 2021 (contributed talk)},year={2021},month=dec,keywords={W},}
2019
NeurIPS
DeepUSPS: Deep Robust Unsupervised Saliency Prediction With Self-Supervision
Tam Nguyen*, Maximilian Dax*, Chaithanya Kumar Mummadi, and 4 more authors
@article{nguyen2019deepusps,title={{DeepUSPS: Deep Robust Unsupervised Saliency Prediction With Self-Supervision}},author={Nguyen, Tam and Dax, Maximilian and Mummadi, Chaithanya Kumar and Ngo, Nhung and Nguyen, Thi Hoai Phuong and Lou, Zhongyu and Brox, Thomas},journal={NeurIPS 2019},volume={33},year={2019},eprint={1909.13055},archiveprefix={arXiv},primaryclass={cs.CV},}
@article{Dax:2018rvs,author={Dax, Maximilian and Isken, Tobias and Kubis, Bastian},title={{Quark-mass dependence in $\omega \rightarrow 3\pi $ decays}},eprint={1808.08957},archiveprefix={arXiv},primaryclass={hep-ph},doi={10.1140/epjc/s10052-018-6346-3},journal={Eur. Phys. J. C},volume={78},number={10},pages={859},year={2018},}